

M-Scope type S SOPHISTICATED OPTICAL BEAM NFP MEASUREMENT OPTICS

Best suit for optical beam pattern observation and analysis. Widely applied general purpose microscope-type NFP optics.

M-Scope type S is a high-performance optical system for optical beam observation, beam profile measurement and analysis, NFP measurement of laser diodes, optical fibers, optical waveguides, and various light-emitting devices and modules.

[Features]

OEquipped with manual 4-hole objective revolver as standard

OCan be equipped with coaxial epi-illumination port (optional). Possible to observe real microscopic image observation and positioning.

 \bigcirc Up to 200x optical magnification with 2x intermediate lens port (optional) and 100x objective lens.

OPossible to measure in 400nm to 1700nm wavelength range by selecting detector.

○High-performance NFP measurement system can be constructed by using Synos' optical beam analysis module **AP013** together.

[Summary of specifications]

OMesurement method: Magnifying optics & image processing

Objective lens change: By manual revolver

Objective lens: Mitsutoyo M-Plan Apo series

○Intermediate lens: 1×

OMaximum optical magnification: 100× (100× objectibe lens)

OEpi-illumination: Option

OAttenuate: By neutral density filter

OCamera mount: C mount [Available detectors selection]

○ for 400~1100nm: Hi-resolution CMOS detector **ISA071**, etc. ○ for 950~1700nm: InGaAs NIR detector **ISA041H2**, etc. ○ for 400~1700nm: InGaAs NIR derector **ISA041HRA**, etc. **③** Regarding the field of view and pixel resolution during NFP

measurement by the detector used, please refer to P50 [Detector selection and NFP measurement specifications]

[Option]

Option for **M-Scope type S** optics

● 2× intermediate lens port **MS-OP011-RL2** Intermediate lens unit that doubles the overall magnification of the optical system. (up to 200× with 100× objective lens)

● 1/2× intermediate lens port MS-OP011-RLH Intermediate lens unit that halves the overall magnification of the optical system.

Coaxial epi-illumination port MS-OP011-CEP
 Coaxial epi-illumination port with removable half mirror.

OAccessories for optics

 Objective lens, ND filter, coaxial epi- illumination light source, optics bench, etc.

[Standard component]

○Main optics: 1○Optics base: 1

M-Scope type L SIMPLIFIED OPTICAL BEAM NFP MEASUREMENT OPTICS

Cost-effective model of NFP optics with simplified functionality.

M-Scope type L is a simple functionality, less expensive model, without manual revolver and LED coaxial epi-illumination port.

[Features]

OSimple functionality, less expensive model, without manual revolver and coaxial epi-illumination port.

OPossible to measure in 400nm to 1700nm wavelength range by selecting detector.

ONFP measurement system can be constructed by using Synos' optical beam analysis module **AP013** together.

 $\bigcirc \mathsf{Easy}$ to mount on various stages in a small housing.

[Summary of specifications]

OMesurement method: Magnifying optics & image processing

Objective lens change: By re-mounting objective lens
Objective lens: Mitsutoyo M-Plan Apo series

 \bigcirc Intermediate lens: 1×

○Maximum optical magnification: 100× (100× objectibe lens)

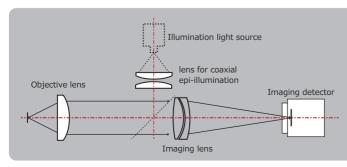
OEpi-illumination: Not available

OAttenuate: By neutral density filter

OCamera mount: C mount

[Available detectors selection]

○ for 400~1100nm: Hi-resolution CMOS detector **ISA071**, etc. ○ for 950~1700nm: InGaAs NIR detector **ISA041H2**, etc. ○ for 400~1700nm: InGaAs NIR derector **ISA041HRA**, etc. ○ Regarding the field of view and pixel resolution during NFP measurement by the detector used, please refer to P50 【Detector selection and NFP measurement specifications】


[Standard component]

OMain optics: 1
Optics base: 1

[Option]

OAccessories for optics

● Objective lens, ND filter, optics bench, etc.

The measurement light emitted from the sample is magnified by the first-stage objective lens and imaged on the image detector at the latter stage of the optical system by the imaging lens. The captured images are processed on a PC and analyzed for the emission beam profile, beam width, power distribution, etc. of the sample.